extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1C33 = C6×C3≀C3 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 54 | | (C3xC6).1C3^3 | 486,210 |
(C3×C6).2C33 = C6×He3.C3 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).2C3^3 | 486,211 |
(C3×C6).3C33 = C6×He3⋊C3 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).3C3^3 | 486,212 |
(C3×C6).4C33 = C6×C3.He3 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).4C3^3 | 486,213 |
(C3×C6).5C33 = C2×C9.He3 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 54 | 3 | (C3xC6).5C3^3 | 486,214 |
(C3×C6).6C33 = C2×C33⋊C32 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).6C3^3 | 486,215 |
(C3×C6).7C33 = C2×He3.C32 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).7C3^3 | 486,216 |
(C3×C6).8C33 = C2×He3⋊C32 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).8C3^3 | 486,217 |
(C3×C6).9C33 = C2×C32.C33 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).9C3^3 | 486,218 |
(C3×C6).10C33 = C2×C9.2He3 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).10C3^3 | 486,219 |
(C3×C6).11C33 = C3×C6×3- 1+2 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).11C3^3 | 486,252 |
(C3×C6).12C33 = C6×C9○He3 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 162 | | (C3xC6).12C3^3 | 486,253 |
(C3×C6).13C33 = C2×3+ 1+4 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).13C3^3 | 486,254 |
(C3×C6).14C33 = C2×3- 1+4 | φ: C33/C32 → C3 ⊆ Aut C3×C6 | 54 | 9 | (C3xC6).14C3^3 | 486,255 |
(C3×C6).15C33 = C6×C32⋊C9 | central extension (φ=1) | 162 | | (C3xC6).15C3^3 | 486,191 |
(C3×C6).16C33 = C6×C9⋊C9 | central extension (φ=1) | 486 | | (C3xC6).16C3^3 | 486,192 |
(C3×C6).17C33 = C2×C92⋊3C3 | central extension (φ=1) | 162 | | (C3xC6).17C3^3 | 486,193 |
(C3×C6).18C33 = C18×He3 | central extension (φ=1) | 162 | | (C3xC6).18C3^3 | 486,194 |
(C3×C6).19C33 = C18×3- 1+2 | central extension (φ=1) | 162 | | (C3xC6).19C3^3 | 486,195 |
(C3×C6).20C33 = C2×C32⋊He3 | central extension (φ=1) | 54 | | (C3xC6).20C3^3 | 486,196 |
(C3×C6).21C33 = C2×C34.C3 | central extension (φ=1) | 54 | | (C3xC6).21C3^3 | 486,197 |
(C3×C6).22C33 = C2×C9⋊He3 | central extension (φ=1) | 162 | | (C3xC6).22C3^3 | 486,198 |
(C3×C6).23C33 = C2×C32.23C33 | central extension (φ=1) | 162 | | (C3xC6).23C3^3 | 486,199 |
(C3×C6).24C33 = C2×C9⋊3- 1+2 | central extension (φ=1) | 162 | | (C3xC6).24C3^3 | 486,200 |
(C3×C6).25C33 = C2×C33.31C32 | central extension (φ=1) | 162 | | (C3xC6).25C3^3 | 486,201 |
(C3×C6).26C33 = C2×C92⋊7C3 | central extension (φ=1) | 162 | | (C3xC6).26C3^3 | 486,202 |
(C3×C6).27C33 = C2×C92⋊4C3 | central extension (φ=1) | 162 | | (C3xC6).27C3^3 | 486,203 |
(C3×C6).28C33 = C2×C92⋊5C3 | central extension (φ=1) | 162 | | (C3xC6).28C3^3 | 486,204 |
(C3×C6).29C33 = C2×C92⋊8C3 | central extension (φ=1) | 162 | | (C3xC6).29C3^3 | 486,205 |
(C3×C6).30C33 = C2×C92⋊9C3 | central extension (φ=1) | 162 | | (C3xC6).30C3^3 | 486,206 |